Atari Games On Atari 2600 Space Invaders
Metriken
Score
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | Score |
---|---|
asynchronous-methods-for-deep-reinforcement | 2214.7 |
evolution-strategies-as-a-scalable | 678.5 |
prioritized-experience-replay | 2865.8 |
mastering-atari-with-discrete-world-models-1 | 2474 |
playing-atari-with-six-neurons | 830 |
policy-optimization-with-penalized-point | 1216.15 |
gdi-rethinking-what-makes-reinforcement | 140460 |
learning-values-across-many-orders-of | 2589.7 |
generalized-data-distribution-iteration | 140460 |
fully-parameterized-quantile-function-for | 46498.3 |
deep-reinforcement-learning-with-double-q | 1692.3 |
massively-parallel-methods-for-deep | 1183.3 |
noisy-networks-for-exploration | 5909 |
asynchronous-methods-for-deep-reinforcement | 15730.5 |
asynchronous-methods-for-deep-reinforcement | 23846.0 |
playing-atari-with-deep-reinforcement | 1075 |
dna-proximal-policy-optimization-with-a-dual | 2731 |
deep-reinforcement-learning-with-double-q | 8978.0 |
generalized-data-distribution-iteration | 154380 |
recurrent-experience-replay-in-distributed | 43223.4 |
model-free-episodic-control-with-state | 1990 |
mastering-atari-go-chess-and-shogi-by | 74335.30 |
Modell 23 | 267.9 |
recurrent-rational-networks | 1395 |
implicit-quantile-networks-for-distributional | 28888 |
online-and-offline-reinforcement-learning-by | 3645.63 |
deep-reinforcement-learning-with-double-q | 1293.8 |
soft-actor-critic-for-discrete-action | 160.8 |
the-arcade-learning-environment-an-evaluation | 250.1 |
impala-scalable-distributed-deep-rl-with | 43595.78 |
dueling-network-architectures-for-deep | 5993.1 |
generalized-data-distribution-iteration | 154380 |
agent57-outperforming-the-atari-human | 48680.86 |
increasing-the-action-gap-new-operators-for | 3460.79 |
mean-actor-critic | 1173.1 |
human-level-control-through-deep | 1976.0 |
distributed-deep-reinforcement-learning-learn | 650 |
deep-reinforcement-learning-with-double-q | 2628.7 |
deep-exploration-via-bootstrapped-dqn | 2893 |
dueling-network-architectures-for-deep | 15311.5 |
deep-attention-recurrent-q-network | 650 |
dueling-network-architectures-for-deep | 2525.5 |
recurrent-rational-networks | 650 |
increasing-the-action-gap-new-operators-for | 3277.59 |
self-imitation-learning | 2951.7 |
evolving-simple-programs-for-playing-atari | 1001 |
the-arcade-learning-environment-an-evaluation | 2718 |
distributional-reinforcement-learning-with-1 | 20972 |
dueling-network-architectures-for-deep | 6427.3 |
train-a-real-world-local-path-planner-in-one | 21602 |
iq-learn-inverse-soft-q-learning-for | - |
distributed-prioritized-experience-replay | 54681 |
prioritized-experience-replay | 3912.1 |
a-distributional-perspective-on-reinforcement | 5747.0 |
rainbow-combining-improvements-in-deep | 12629.0 |