HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Atari Games
Atari Games On Atari 2600 Robotank
Atari Games On Atari 2600 Robotank
Metriken
Score
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Score
Paper Title
Repository
DDQN+Pop-Art noop
64.3
Learning values across many orders of magnitude
-
FQF
75.7
Fully Parameterized Quantile Function for Distributional Reinforcement Learning
R2D2
100.4
Recurrent Experience Replay in Distributed Reinforcement Learning
-
Prior noop
62.6
Prioritized Experience Replay
Advantage Learning
69.31
Increasing the Action Gap: New Operators for Reinforcement Learning
DNA
64.8
DNA: Proximal Policy Optimization with a Dual Network Architecture
UCT
50.4
The Arcade Learning Environment: An Evaluation Platform for General Agents
IMPALA (deep)
12.96
IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
DDQN (tuned) noop
65.1
Dueling Network Architectures for Deep Reinforcement Learning
Prior hs
56.2
Prioritized Experience Replay
DreamerV2
78
Mastering Atari with Discrete World Models
Prior+Duel noop
27.5
Dueling Network Architectures for Deep Reinforcement Learning
Duel hs
62.0
Dueling Network Architectures for Deep Reinforcement Learning
SARSA
12.4
-
-
A3C LSTM hs
2.6
Asynchronous Methods for Deep Reinforcement Learning
A3C FF hs
32.8
Asynchronous Methods for Deep Reinforcement Learning
DQN hs
58.7
Deep Reinforcement Learning with Double Q-learning
Prior+Duel hs
24.7
Deep Reinforcement Learning with Double Q-learning
ASL DDQN
65.8
Train a Real-world Local Path Planner in One Hour via Partially Decoupled Reinforcement Learning and Vectorized Diversity
-
Bootstrapped DQN
66.6
Deep Exploration via Bootstrapped DQN
0 of 42 row(s) selected.
Previous
Next