HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Atari Games
Atari Games On Atari 2600 Kung Fu Master
Atari Games On Atari 2600 Kung Fu Master
Metriken
Score
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Score
Paper Title
Repository
Prior noop
39581.0
Prioritized Experience Replay
DQN hs
20882.0
Deep Reinforcement Learning with Double Q-learning
DDQN (tuned) noop
29710.0
Dueling Network Architectures for Deep Reinforcement Learning
A3C LSTM hs
40835.0
Asynchronous Methods for Deep Reinforcement Learning
Advantage Learning
32182.99
Increasing the Action Gap: New Operators for Reinforcement Learning
Prior+Duel noop
48375.0
Dueling Network Architectures for Deep Reinforcement Learning
A3C FF (1 day) hs
3046.0
Asynchronous Methods for Deep Reinforcement Learning
GDI-I3
140440
Generalized Data Distribution Iteration
-
FQF
111138.5
Fully Parameterized Quantile Function for Distributional Reinforcement Learning
DDQN (tuned) hs
30207.0
Deep Reinforcement Learning with Double Q-learning
Bootstrapped DQN
36733.3
Deep Exploration via Bootstrapped DQN
DDQN+Pop-Art noop
34393.0
Learning values across many orders of magnitude
-
CGP
57400
Evolving simple programs for playing Atari games
POP3D
33728
Policy Optimization With Penalized Point Probability Distance: An Alternative To Proximal Policy Optimization
Persistent AL
34650.91
Increasing the Action Gap: New Operators for Reinforcement Learning
GDI-H3 (200M)
1666000
GDI: Rethinking What Makes Reinforcement Learning Different from Supervised Learning
-
DreamerV2
62741
Mastering Atari with Discrete World Models
NoisyNet-Dueling
41672
Noisy Networks for Exploration
Gorila
20620.0
Massively Parallel Methods for Deep Reinforcement Learning
DQN noop
26059.0
Deep Reinforcement Learning with Double Q-learning
0 of 43 row(s) selected.
Previous
Next