HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Atari Games
Atari Games On Atari 2600 James Bond
Atari Games On Atari 2600 James Bond
Metriken
Score
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Score
Paper Title
Repository
Duel noop
1312.5
Dueling Network Architectures for Deep Reinforcement Learning
Prior hs
3961.0
Prioritized Experience Replay
Rational DQN Average
1122
Adaptive Rational Activations to Boost Deep Reinforcement Learning
R2D2
25354.0
Recurrent Experience Replay in Distributed Reinforcement Learning
-
DreamerV2
40445
Mastering Atari with Discrete World Models
Recurrent Rational DQN Average
1137
Adaptive Rational Activations to Boost Deep Reinforcement Learning
CGP
6130
Evolving simple programs for playing Atari games
Duel hs
835.5
Dueling Network Architectures for Deep Reinforcement Learning
Prior noop
5148.0
Prioritized Experience Replay
Best Learner
202.8
The Arcade Learning Environment: An Evaluation Platform for General Agents
GDI-I3
594500
Generalized Data Distribution Iteration
-
A2C + SIL
310.8
Self-Imitation Learning
Ape-X
21322.5
Distributed Prioritized Experience Replay
IQN
35108
Implicit Quantile Networks for Distributional Reinforcement Learning
DNA
14102
DNA: Proximal Policy Optimization with a Dual Network Architecture
Agent57
135784.96
Agent57: Outperforming the Atari Human Benchmark
Prior+Duel noop
812.0
Dueling Network Architectures for Deep Reinforcement Learning
IMPALA (deep)
601.50
IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
SAC
68.3
Soft Actor-Critic for Discrete Action Settings
GDI-I3
594500
GDI: Rethinking What Makes Reinforcement Learning Different From Supervised Learning
-
0 of 45 row(s) selected.
Previous
Next