HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Atari Games
Atari Games On Atari 2600 Defender
Atari Games On Atari 2600 Defender
Metriken
Score
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Score
Paper Title
Repository
IMPALA (deep)
185203.00
IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
Prior+Duel noop
41324.5
Dueling Network Architectures for Deep Reinforcement Learning
Duel noop
42214.0
Dueling Network Architectures for Deep Reinforcement Learning
Prior+Duel hs
34415.0
Dueling Network Architectures for Deep Reinforcement Learning
ASL DDQN
37026.5
Train a Real-world Local Path Planner in One Hour via Partially Decoupled Reinforcement Learning and Vectorized Diversity
-
GDI-H3
970540
Generalized Data Distribution Iteration
-
Advantage Learning
30643.59
Increasing the Action Gap: New Operators for Reinforcement Learning
QR-DQN-1
47887
Distributional Reinforcement Learning with Quantile Regression
DNA
152768
DNA: Proximal Policy Optimization with a Dual Network Architecture
Persistent AL
32038.93
Increasing the Action Gap: New Operators for Reinforcement Learning
MuZero
839642.95
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model
Ape-X
411943.5
Distributed Prioritized Experience Replay
R2D2
665792.0
Recurrent Experience Replay in Distributed Reinforcement Learning
-
CGP
993010
Evolving simple programs for playing Atari games
MuZero (Res2 Adam)
557200.75
Online and Offline Reinforcement Learning by Planning with a Learned Model
GDI-I3
893110
GDI: Rethinking What Makes Reinforcement Learning Different From Supervised Learning
-
NoisyNet-Dueling
42253
Noisy Networks for Exploration
GDI-I3
893110
Generalized Data Distribution Iteration
-
IQN
53537
Implicit Quantile Networks for Distributional Reinforcement Learning
Reactor 500M
223025.0
The Reactor: A fast and sample-efficient Actor-Critic agent for Reinforcement Learning
-
0 of 21 row(s) selected.
Previous
Next