HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Atari Games
Atari Games On Atari 2600 Bowling
Atari Games On Atari 2600 Bowling
Metriken
Score
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Score
Paper Title
Repository
Advantage Learning
57.41
Increasing the Action Gap: New Operators for Reinforcement Learning
GDI-I3
201.9
GDI: Rethinking What Makes Reinforcement Learning Different From Supervised Learning
-
DDQN (tuned) hs
69.6
Deep Reinforcement Learning with Double Q-learning
DNA
181
DNA: Proximal Policy Optimization with a Dual Network Architecture
A3C LSTM hs
41.8
Asynchronous Methods for Deep Reinforcement Learning
CGP
85.8
Evolving simple programs for playing Atari games
GDI-H3
205.2
Generalized Data Distribution Iteration
-
IMPALA (deep)
59.92
IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures
Duel noop
65.5
Dueling Network Architectures for Deep Reinforcement Learning
ASL DDQN
62.4
Train a Real-world Local Path Planner in One Hour via Partially Decoupled Reinforcement Learning and Vectorized Diversity
-
DQN noop
50.4
Deep Reinforcement Learning with Double Q-learning
Ape-X
17.6
Distributed Prioritized Experience Replay
IQN
86.5
Implicit Quantile Networks for Distributional Reinforcement Learning
Duel hs
65.7
Dueling Network Architectures for Deep Reinforcement Learning
QR-DQN-1
77.2
Distributional Reinforcement Learning with Quantile Regression
A3C FF hs
35.1
Asynchronous Methods for Deep Reinforcement Learning
DDQN (tuned) noop
68.1
Dueling Network Architectures for Deep Reinforcement Learning
RUDDER
179
RUDDER: Return Decomposition for Delayed Rewards
Persistent AL
71.59
Increasing the Action Gap: New Operators for Reinforcement Learning
Gorila
54
Massively Parallel Methods for Deep Reinforcement Learning
0 of 44 row(s) selected.
Previous
Next