HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Atari-Spiele
Atari Games On Atari 2600 Battle Zone
Atari Games On Atari 2600 Battle Zone
Metriken
Score
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Score
Paper Title
Agent57
934134.88
Agent57: Outperforming the Atari Human Benchmark
MuZero
848623.00
Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model
GDI-H3
824360
Generalized Data Distribution Iteration
R2D2
751880.0
Recurrent Experience Replay in Distributed Reinforcement Learning
GDI-I3
478830
Generalized Data Distribution Iteration
MuZero (Res2 Adam)
178716.9
Online and Offline Reinforcement Learning by Planning with a Learned Model
Ape-X
98895
Distributed Prioritized Experience Replay
FQF
87928.6
Fully Parameterized Quantile Function for Distributional Reinforcement Learning
DNA
71003
DNA: Proximal Policy Optimization with a Dual Network Architecture
UCT
70333.3
The Arcade Learning Environment: An Evaluation Platform for General Agents
Reactor 500M
64070.0
The Reactor: A fast and sample-efficient Actor-Critic agent for Reinforcement Learning
NoisyNet-Dueling
52262
Noisy Networks for Exploration
IQN
42244
Implicit Quantile Networks for Distributional Reinforcement Learning
DreamerV2
40325
Mastering Atari with Discrete World Models
QR-DQN-1
39268
Distributional Reinforcement Learning with Quantile Regression
ASL DDQN
38986
Train a Real-world Local Path Planner in One Hour via Partially Decoupled Reinforcement Learning and Vectorized Diversity
Bootstrapped DQN
38666.7
Deep Exploration via Bootstrapped DQN
Duel noop
37150.0
Dueling Network Architectures for Deep Reinforcement Learning
Prior+Duel noop
35520.0
Dueling Network Architectures for Deep Reinforcement Learning
Persistent AL
34583.07
Increasing the Action Gap: New Operators for Reinforcement Learning
0 of 47 row(s) selected.
Previous
Next