HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
Atari Games
Atari Games On Atari 2600 Bank Heist
Atari Games On Atari 2600 Bank Heist
Metriken
Score
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Score
Paper Title
Repository
Prior+Duel hs
1004.6
Deep Reinforcement Learning with Double Q-learning
Rainbow+SEER
276.6
Improving Computational Efficiency in Visual Reinforcement Learning via Stored Embeddings
NoisyNet-Dueling
1318
Noisy Networks for Exploration
MuZero (Res2 Adam)
27219.8
Online and Offline Reinforcement Learning by Planning with a Learned Model
Best Learner
190.8
The Arcade Learning Environment: An Evaluation Platform for General Agents
DNA
1286
DNA: Proximal Policy Optimization with a Dual Network Architecture
DDQN (tuned) noop
1030.6
Dueling Network Architectures for Deep Reinforcement Learning
Gorila
399.4
Massively Parallel Methods for Deep Reinforcement Learning
DQN hs
312.7
Deep Reinforcement Learning with Double Q-learning
Duel hs
1129.3
Dueling Network Architectures for Deep Reinforcement Learning
POP3D
1212.23
Policy Optimization With Penalized Point Probability Distance: An Alternative To Proximal Policy Optimization
DreamerV2
1126
Mastering Atari with Discrete World Models
DDQN+Pop-Art noop
1103.3
Learning values across many orders of magnitude
-
SARSA
67.4
-
-
DDQN (tuned) hs
886.0
Deep Reinforcement Learning with Double Q-learning
Bootstrapped DQN
1208
Deep Exploration via Bootstrapped DQN
Advantage Learning
633.63
Increasing the Action Gap: New Operators for Reinforcement Learning
CURL
193.7
CURL: Contrastive Unsupervised Representations for Reinforcement Learning
Discrete Latent Space World Model (VQ-VAE)
121.6
Smaller World Models for Reinforcement Learning
-
IQN
1416
Implicit Quantile Networks for Distributional Reinforcement Learning
0 of 45 row(s) selected.
Previous
Next