HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Anomalieklassifikation
Anomaly Classification On Goodsad
Anomaly Classification On Goodsad
Metriken
AUPR
AUROC
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
AUPR
AUROC
Paper Title
MiniMaxAD-fr
-
86.1
MiniMaxAD: A Lightweight Autoencoder for Feature-Rich Anomaly Detection
PatchCore-100%
86.1
85.5
Towards Total Recall in Industrial Anomaly Detection
PatchCore-1%
83.3
81.4
Towards Total Recall in Industrial Anomaly Detection
SimpleNet
78.7
75.3
SimpleNet: A Simple Network for Image Anomaly Detection and Localization
CFLOW-AD
75.3
71.2
CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows
NSA
71.8
67.3
Natural Synthetic Anomalies for Self-Supervised Anomaly Detection and Localization
RD4AD
68.2
66.5
Anomaly Detection via Reverse Distillation from One-Class Embedding
DRAEM
71
65.9
DRAEM -- A discriminatively trained reconstruction embedding for surface anomaly detection
SPADE
68.7
64.1
Sub-Image Anomaly Detection with Deep Pyramid Correspondences
f-AnoGAN
66.6
62.8
f-AnoGAN: Fast Unsupervised Anomaly Detection with Generative Adversarial Networks
CutPaste
62.8
60.2
CutPaste: Self-Supervised Learning for Anomaly Detection and Localization
0 of 11 row(s) selected.
Previous
Next