HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
Ästhetikqualitätseinschätzung
Aesthetics Quality Assessment On Ava
Aesthetics Quality Assessment On Ava
Metriken
Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Accuracy
Paper Title
MP_adam
83.0%
Attention-based Multi-Patch Aggregation for Image Aesthetic Assessment
A-Lamp
82.5%
A-Lamp: Adaptive Layout-Aware Multi-Patch Deep Convolutional Neural Network for Photo Aesthetic Assessment
Pool-3FC
81.7%
Effective Aesthetics Prediction with Multi-level Spatially Pooled Features
NIMA
81.5%
NIMA: Neural Image Assessment
MTRLCNN
79.1%
Deep Aesthetic Quality Assessment with Semantic Information
MNA-CNN
77.4%
Composition-Preserving Deep Photo Aesthetics Assessment
ADB-CNN
77.3%
Photo Aesthetics Ranking Network with Attributes and Content Adaptation
DMA-Net
75.4%
Deep Multi-Patch Aggregation Network for Image Style, Aesthetics, and Quality Estimation
Hand-crafted features
68.0%
-
0 of 9 row(s) selected.
Previous
Next