HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
3D-Rekonstruktion
3D Reconstruction On Dtu
3D Reconstruction On Dtu
Metriken
Acc
Comp
Overall
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Acc
Comp
Overall
Paper Title
PatchmatchNet
0.427
0.277
0.352
PatchmatchNet: Learned Multi-View Patchmatch Stereo
EPP-MVSNet
0.413
0.296
0.355
EPP-MVSNet: Epipolar-Assembling Based Depth Prediction for Multi-View Stereo
COLMAP
0.400
0.664
0.532
Structure-From-Motion Revisited
3D-R2N2
0.397
0.884
0.630
3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction
MVSNet
0.396
0.527
0.462
MVSNet: Depth Inference for Unstructured Multi-view Stereo
MSCVP-MVSNet
0.379
0.278
0.328
Cost Volume Pyramid Network with Multi-strategies Range Searching for Multi-view Stereo
AA-RMVSNet
0.376
0.339
0.357
AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network
Vis-MVSNet
0.369
0.361
0.365
Visibility-aware Multi-view Stereo Network
UniMVSNet
0.352
0.278
0.315
Rethinking Depth Estimation for Multi-View Stereo: A Unified Representation
CDS-MVSNet
0.351
0.278
0.315
Curvature-guided dynamic scale networks for Multi-view Stereo
GoMVS
0.347
0.227
0.287
GoMVS: Geometrically Consistent Cost Aggregation for Multi-View Stereo
UCSNet
0.338
0.349
0.344
Deep Stereo using Adaptive Thin Volume Representation with Uncertainty Awareness
IB-MVS
0.334
0.309
0.321
IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions
GeoMVSNet
0.331
0.259
0.295
GeoMVSNet: Learning Multi-View Stereo With Geometry Perception
GC-MVSNet
0.330
0.260
0.295
GC-MVSNet: Multi-View, Multi-Scale, Geometrically-Consistent Multi-View Stereo
ET-MVSNet
0.329
0.253
0.291
When Epipolar Constraint Meets Non-local Operators in Multi-View Stereo
MVSFormer
0.327
0.251
0.289
MVSFormer: Multi-View Stereo by Learning Robust Image Features and Temperature-based Depth
RA-MVSNet
0.326
0.268
0.297
Multi-View Stereo Representation Revisit: Region-Aware MVSNet
Cas-MVSNet
0.325
0.385
0.355
Cascade Cost Volume for High-Resolution Multi-View Stereo and Stereo Matching
TransMVSNet
0.321
0.289
0.305
TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers
0 of 24 row(s) selected.
Previous
Next