3D Reconstruction On Dtu
Metriken
Acc
Comp
Overall
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Vergleichstabelle
Modellname | Acc | Comp | Overall |
---|---|---|---|
transmvsnet-global-context-aware-multi-view | 0.321 | 0.289 | 0.305 |
deep-stereo-using-adaptive-thin-volume | 0.338 | 0.349 | 0.344 |
epp-mvsnet-epipolar-assembling-based-depth | 0.413 | 0.296 | 0.355 |
structure-from-motion-revisited | 0.400 | 0.664 | 0.532 |
when-epipolar-constraint-meets-non-local-1 | 0.329 | 0.253 | 0.291 |
mvsnet-depth-inference-for-unstructured-multi | 0.396 | 0.527 | 0.462 |
3d-r2n2-a-unified-approach-for-single-and | 0.397 | 0.884 | 0.630 |
curvature-guided-dynamic-scale-networks-for-1 | 0.351 | 0.278 | 0.315 |
massively-parallel-multiview-stereopsis-by | 0.283 | 0.873 | 0.578 |
geomvsnet-learning-multi-view-stereo-with | 0.331 | 0.259 | 0.295 |
gomvs-geometrically-consistent-cost | 0.347 | 0.227 | 0.287 |
cascade-cost-volume-for-high-resolution-multi | 0.325 | 0.385 | 0.355 |
cost-volume-pyramid-based-depth-inference-for | 0.296 | 0.406 | 0.351 |
aa-rmvsnet-adaptive-aggregation-recurrent | 0.376 | 0.339 | 0.357 |
visibility-aware-multi-view-stereo-network | 0.369 | 0.361 | 0.365 |
gc-mvsnet-multi-view-multi-scale | 0.330 | 0.260 | 0.295 |
ib-mvs-an-iterative-algorithm-for-deep-multi | 0.334 | 0.309 | 0.321 |
multi-view-stereo-representation-revist | 0.326 | 0.268 | 0.297 |
generalized-binary-search-network-for-highly | 0.312 | 0.293 | 0.303 |
mvsformer-revealing-the-devil-in-transformer | 0.3090 | 0.2521 | 0.2805 |
cost-volume-pyramid-network-with-multi | 0.379 | 0.278 | 0.328 |
mvsformer-learning-robust-image | 0.327 | 0.251 | 0.289 |
rethinking-depth-estimation-for-multi-view | 0.352 | 0.278 | 0.315 |
patchmatchnet-learned-multi-view-patchmatch | 0.427 | 0.277 | 0.352 |