HyperAI
HyperAI
Startseite
Plattform
Dokumentation
Neuigkeiten
Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Nutzungsbedingungen
Datenschutzrichtlinie
Deutsch
HyperAI
HyperAI
Toggle Sidebar
Seite durchsuchen…
⌘
K
Command Palette
Search for a command to run...
Plattform
Startseite
SOTA
3D-Punktewolke Lineare Klassifikation
3D Point Cloud Linear Classification On
3D Point Cloud Linear Classification On
Metriken
Overall Accuracy
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
Overall Accuracy
Paper Title
Point-JEPA
93.7±0.2
Point-JEPA: A Joint Embedding Predictive Architecture for Self-Supervised Learning on Point Cloud
ReCon++
93.6
ShapeLLM: Universal 3D Object Understanding for Embodied Interaction
I2P-MAE
93.4
Learning 3D Representations from 2D Pre-trained Models via Image-to-Point Masked Autoencoders
ReCon
93.4
Contrast with Reconstruct: Contrastive 3D Representation Learning Guided by Generative Pretraining
Point-M2AE
92.9
Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud Pre-training
IAE (DGCNN)
92.1
Implicit Autoencoder for Point-Cloud Self-Supervised Representation Learning
CrossMoCo
91.49
CrossMoCo: Multi-modal Momentum Contrastive Learning for Point Cloud
AdaCrossNet
91.4
AdaCrossNet: Adaptive Dynamic Loss Weighting for Cross-Modal Contrastive Point Cloud Learning
CrossPoint
91.2
CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding
STRL
90.9
Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds
PSG-Net
90.9
Progressive Seed Generation Auto-encoder for Unsupervised Point Cloud Learning
PointOE
90.7
Self-supervised Learning of Point Clouds via Orientation Estimation
Point-Jigsaw
90.6
Self-Supervised Deep Learning on Point Clouds by Reconstructing Space
MID-FC
90.3
Unsupervised 3D Learning for Shape Analysis via Multiresolution Instance Discrimination
VIP-GAN
90.2
View Inter-Prediction GAN: Unsupervised Representation Learning for 3D Shapes by Learning Global Shape Memories to Support Local View Predictions
OcCo
89.2
Unsupervised Point Cloud Pre-Training via Occlusion Completion
MAE-VAE
88.4
Multi-Angle Point Cloud-VAE: Unsupervised Feature Learning for 3D Point Clouds from Multiple Angles by Joint Self-Reconstruction and Half-to-Half Prediction
FoldingNet
88.4
FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation
SO-Net
87.5
SO-Net: Self-Organizing Network for Point Cloud Analysis
3D-GAN
83.3
Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
0 of 20 row(s) selected.
Previous
Next
3D Point Cloud Linear Classification On | SOTA | HyperAI