HyperAI
Startseite
Neuigkeiten
Neueste Forschungsarbeiten
Tutorials
Datensätze
Wiki
SOTA
LLM-Modelle
GPU-Rangliste
Veranstaltungen
Suche
Über
Deutsch
HyperAI
Toggle sidebar
Seite durchsuchen…
⌘
K
Startseite
SOTA
3D Instance Segmentation 1
3D Instance Segmentation On Scannetv2
3D Instance Segmentation On Scannetv2
Metriken
mAP
mAP @ 50
mRec
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Columns
Modellname
mAP
mAP @ 50
mRec
Paper Title
Repository
3D-BoNet
25.3
48.8
47.6
Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds
ResNet-Backbone
-
45.9
-
MASC: Multi-scale Affinity with Sparse Convolution for 3D Instance Segmentation
MSTA3D
56.9
79.5
74.1
MSTA3D: Multi-scale Twin-attention for 3D Instance Segmentation
-
RPGN
42.8
64.2
-
Learning Regional Purity for Instance Segmentation on 3D Point Clouds
UNet-Backbone
-
31.9
-
3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
Searilized Point Mamba
40.0
-
-
Serialized Point Mamba: A Serialized Point Cloud Mamba Segmentation Model
-
HIDA
43.6
63.5
-
HIDA: Towards Holistic Indoor Understanding for the Visually Impaired via Semantic Instance Segmentation with a Wearable Solid-State LiDAR Sensor
-
SSTNet
50.6
69.8
-
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks
-
Spherical Mask
61.6
81.2
-
Spherical Mask: Coarse-to-Fine 3D Point Cloud Instance Segmentation with Spherical Representation
PointGroup
40.7
63.6
-
PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation
3D-MPA
35.3
59.1
61.1
3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation
MAFT
59.6
-
-
Mask-Attention-Free Transformer for 3D Instance Segmentation
HAIS
45.7
69.9
-
Hierarchical Aggregation for 3D Instance Segmentation
ODIN
50.0
71.0
-
ODIN: A Single Model for 2D and 3D Segmentation
OneFromer3D
56.6
80.1
-
OneFormer3D: One Transformer for Unified Point Cloud Segmentation
ISBNet
55.9
76.3
-
ISBNet: a 3D Point Cloud Instance Segmentation Network with Instance-aware Sampling and Box-aware Dynamic Convolution
BFL
60.6
81.0
-
Beyond the Final Layer: Hierarchical Query Fusion Transformer with Agent-Interpolation Initialization for 3D Instance Segmentation
-
DKNet
53.2
71.8
-
3D Instances as 1D Kernels
TD3D
48.9
75.1
-
Top-Down Beats Bottom-Up in 3D Instance Segmentation
GICN
-
63.8
-
Learning Gaussian Instance Segmentation in Point Clouds
0 of 31 row(s) selected.
Previous
Next