HyperAI

3D Instance Segmentation On Scannetv2

Metriken

mAP
mAP @ 50
mRec

Ergebnisse

Leistungsergebnisse verschiedener Modelle zu diesem Benchmark

Modellname
mAP
mAP @ 50
mRec
Paper TitleRepository
3D-BoNet25.348.847.6Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds
ResNet-Backbone-45.9-MASC: Multi-scale Affinity with Sparse Convolution for 3D Instance Segmentation
MSTA3D56.979.574.1MSTA3D: Multi-scale Twin-attention for 3D Instance Segmentation-
RPGN42.864.2-Learning Regional Purity for Instance Segmentation on 3D Point Clouds
UNet-Backbone-31.9-3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation
Searilized Point Mamba40.0--Serialized Point Mamba: A Serialized Point Cloud Mamba Segmentation Model-
HIDA43.663.5-HIDA: Towards Holistic Indoor Understanding for the Visually Impaired via Semantic Instance Segmentation with a Wearable Solid-State LiDAR Sensor-
SSTNet50.669.8-Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks-
Spherical Mask61.681.2-Spherical Mask: Coarse-to-Fine 3D Point Cloud Instance Segmentation with Spherical Representation
PointGroup40.763.6-PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation
3D-MPA35.359.161.13D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation
MAFT59.6--Mask-Attention-Free Transformer for 3D Instance Segmentation
HAIS45.769.9-Hierarchical Aggregation for 3D Instance Segmentation
ODIN50.071.0-ODIN: A Single Model for 2D and 3D Segmentation
OneFromer3D56.680.1-OneFormer3D: One Transformer for Unified Point Cloud Segmentation
ISBNet55.976.3-ISBNet: a 3D Point Cloud Instance Segmentation Network with Instance-aware Sampling and Box-aware Dynamic Convolution
BFL60.681.0-Beyond the Final Layer: Hierarchical Query Fusion Transformer with Agent-Interpolation Initialization for 3D Instance Segmentation-
DKNet53.271.8-3D Instances as 1D Kernels
TD3D48.975.1-Top-Down Beats Bottom-Up in 3D Instance Segmentation
GICN-63.8-Learning Gaussian Instance Segmentation in Point Clouds
0 of 31 row(s) selected.