2D Human Pose Estimation On Human Art
Metriken
AP
AP (gt bbox)
Ergebnisse
Leistungsergebnisse verschiedener Modelle zu diesem Benchmark
Modellname | AP | AP (gt bbox) | Paper Title | Repository |
---|---|---|---|---|
HRNet-w48 | 0.417 | 0.769 | Deep High-Resolution Representation Learning for Human Pose Estimation | |
RTMPose-s | 0.311 | - | RTMPose: Real-Time Multi-Person Pose Estimation based on MMPose | |
HRNet-w32 | 0.399 | 0.754 | Deep High-Resolution Representation Learning for Human Pose Estimation | |
ED-Pose (R50) | 0.723 | / | Explicit Box Detection Unifies End-to-End Multi-Person Pose Estimation | |
ViTPose-h | 0.468 | 0.800 | ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation | |
ViTPose-s | 0.381 | 0.738 | ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation | |
ViTPose-l | 0.459 | 0.789 | ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation | |
UniPose | 0.759 | - | X-Pose: Detecting Any Keypoints | |
ViTpose-b | 0.410 | 0.759 | ViTPose: Simple Vision Transformer Baselines for Human Pose Estimation | |
RTMPose-l | - | 0.753 | RTMPose: Real-Time Multi-Person Pose Estimation based on MMPose |
0 of 10 row(s) selected.