HyperAIHyperAI

Command Palette

Search for a command to run...

M2RAG-Benchmark-Datensatz Zur Multimodalen Bewertung

Datum

vor 9 Monaten

Größe

5.46 GB

Organisation

Paper-URL

arxiv.org

M2RAG ist ein multimodaler Datensatz zur Bewertung der Fähigkeiten multimodaler Large Language Models (MLLMs) in multimodalen Abrufszenarien. Ziel ist es, die Fähigkeit von MLLMs zu bewerten, multimodales Dokumentwissen bei Aufgaben wie Bildbeschreibung, multimodaler Fragebeantwortung, Faktenüberprüfung und Neubewertung von Bildern zu nutzen. Die relevanten Papierergebnisse sindBenchmarking der Retrieval-Augmented Generation in multimodalen Kontexten".

Dieser Datensatz kombiniert Bild- und Textdaten, um Aufgaben zur Informationsbeschaffung und -generierung in realen Szenarien zu simulieren, beispielsweise bei der Analyse von Nachrichtenereignissen und der visuellen Beantwortung von Fragen. Der Schwerpunkt liegt auf der Bewertung der Fähigkeit von MLLMs, abgerufenes Dokumentwissen in multimodalen Kontexten zu verwenden, einschließlich des Verständnisses von Bildinhalten, der Schlussfolgerung von Bild-Text-Assoziationen und der Beurteilung von Fakten.

Beispiel einer M2RAG-Benchmark-Aufgabe
M2RAG.torrent
Seeding 1Wird heruntergeladen 0Abgeschlossen 107Gesamtdownloads 192
  • M2RAG/
    • README.md
      1.45 KB
    • README.txt
      2.9 KB
      • data/
        • M2RAG.zip
          5.46 GB

KI mit KI entwickeln

Von der Idee bis zum Launch – beschleunigen Sie Ihre KI-Entwicklung mit kostenlosem KI-Co-Coding, sofort einsatzbereiter Umgebung und bestem GPU-Preis.

KI-gestütztes kollaboratives Programmieren
Sofort einsatzbereite GPUs
Die besten Preise

HyperAI Newsletters

Abonnieren Sie unsere neuesten Updates
Wir werden die neuesten Updates der Woche in Ihren Posteingang liefern um neun Uhr jeden Montagmorgen
Unterstützt von MailChimp