HyperAI超神经

一键部署 Kimi-vl

Kimi-VL
Build
Kimi-VL Paper

一、教程简介

Kimi-VL 项目是 Kimi Team 于 2025 年 4 月发布的 大语言模型,这是一种高效的开源专家混合 (MoE) 视觉语言模型 (VLM),可提供高级多模态推理、长上下文理解和强大的代理功能。相关论文成果为「Kimi-VL Technical Report」。

本教程采用资源为双卡 RTX 4090 。

👉 该项目提供了两种型号的模型:

  • Kimi-VL-A3B-Instruct: 适合对多模态感知和理解、 OCR 、长视频和长文档、视频感知和智能体的使用。
  • Kimi-VL-A3B-Thinking: 适合对高级文本和多模态推理(例如数学)的使用。

二、项目示例

三、运行步骤

1. 启动容器后点击 API 地址即可进入 Web 界面

若不显示「模型」,这表示模型正在初始化,由于模型较大,请等待约 1-2 分钟后刷新页面。

2. 进入网页后,即可与模型展开对话

❗️重要的使用技巧:

  • 使用 Compact mode 时回复的速度较快。
  • 使用 Detailed mode 模式时回复时间较长,约三到五分钟。

使用步骤

四、交流探讨

🖌️ 如果大家看到优质项目,欢迎后台留言推荐!另外,我们还建立了教程交流群,欢迎小伙伴们扫码备注【SD 教程】入群探讨各类技术问题、分享应用效果↓

五、引用信息

感谢 Github 用户 xxxjjjyyy1  对本教程的制作,本项目引用信息如下:

@misc{kimiteam2025kimivltechnicalreport,
      title={{Kimi-VL} Technical Report}, 
      author={Kimi Team and Angang Du and Bohong Yin and Bowei Xing and Bowen Qu and Bowen Wang and Cheng Chen and Chenlin Zhang and Chenzhuang Du and Chu Wei and Congcong Wang and Dehao Zhang and Dikang Du and Dongliang Wang and Enming Yuan and Enzhe Lu and Fang Li and Flood Sung and Guangda Wei and Guokun Lai and Han Zhu and Hao Ding and Hao Hu and Hao Yang and Hao Zhang and Haoning Wu and Haotian Yao and Haoyu Lu and Heng Wang and Hongcheng Gao and Huabin Zheng and Jiaming Li and Jianlin Su and Jianzhou Wang and Jiaqi Deng and Jiezhong Qiu and Jin Xie and Jinhong Wang and Jingyuan Liu and Junjie Yan and Kun Ouyang and Liang Chen and Lin Sui and Longhui Yu and Mengfan Dong and Mengnan Dong and Nuo Xu and Pengyu Cheng and Qizheng Gu and Runjie Zhou and Shaowei Liu and Sihan Cao and Tao Yu and Tianhui Song and Tongtong Bai and Wei Song and Weiran He and Weixiao Huang and Weixin Xu and Xiaokun Yuan and Xingcheng Yao and Xingzhe Wu and Xinxing Zu and Xinyu Zhou and Xinyuan Wang and Y. Charles and Yan Zhong and Yang Li and Yangyang Hu and Yanru Chen and Yejie Wang and Yibo Liu and Yibo Miao and Yidao Qin and Yimin Chen and Yiping Bao and Yiqin Wang and Yongsheng Kang and Yuanxin Liu and Yulun Du and Yuxin Wu and Yuzhi Wang and Yuzi Yan and Zaida Zhou and Zhaowei Li and Zhejun Jiang and Zheng Zhang and Zhilin Yang and Zhiqi Huang and Zihao Huang and Zijia Zhao and Ziwei Chen},
      year={2025},
      eprint={2504.07491},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2504.07491}, 
}