HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Video Based Generative Performance 2
Video Based Generative Performance 4
Video Based Generative Performance 4
评估指标
gpt-score
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
gpt-score
Paper Title
Repository
Video-ChatGPT
2.52
Video-ChatGPT: Towards Detailed Video Understanding via Large Vision and Language Models
Video LLaMA
2.18
Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding
MiniGPT4-video-7B
3.02
MiniGPT4-Video: Advancing Multimodal LLMs for Video Understanding with Interleaved Visual-Textual Tokens
Video Chat
2.50
VideoChat: Chat-Centric Video Understanding
LLaMA Adapter
2.32
LLaMA-Adapter V2: Parameter-Efficient Visual Instruction Model
ST-LLM
3.05
ST-LLM: Large Language Models Are Effective Temporal Learners
SlowFast-LLaVA-34B
2.96
SlowFast-LLaVA: A Strong Training-Free Baseline for Video Large Language Models
MovieChat
2.93
MovieChat: From Dense Token to Sparse Memory for Long Video Understanding
Chat-UniVi
2.91
Chat-UniVi: Unified Visual Representation Empowers Large Language Models with Image and Video Understanding
VTimeLLM
3.10
VTimeLLM: Empower LLM to Grasp Video Moments
TS-LLaVA-34B
3.03
TS-LLaVA: Constructing Visual Tokens through Thumbnail-and-Sampling for Training-Free Video Large Language Models
BT-Adapter (zero-shot)
2.46
BT-Adapter: Video Conversation is Feasible Without Video Instruction Tuning
VideoChat2
2.88
MVBench: A Comprehensive Multi-modal Video Understanding Benchmark
VideoGPT+
3.18
VideoGPT+: Integrating Image and Video Encoders for Enhanced Video Understanding
BT-Adapter
2.69
BT-Adapter: Video Conversation is Feasible Without Video Instruction Tuning
PLLaVA-34B
3.20
PLLaVA : Parameter-free LLaVA Extension from Images to Videos for Video Dense Captioning
VideoChat2_HD_mistral
2.86
MVBench: A Comprehensive Multi-modal Video Understanding Benchmark
PPLLaVA-7B
3.56
PPLLaVA: Varied Video Sequence Understanding With Prompt Guidance
-
0 of 18 row(s) selected.
Previous
Next