HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Smac 1
Smac On Smac Def Infantry Sequential
Smac On Smac Def Infantry Sequential
评估指标
Median Win Rate
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Median Win Rate
Paper Title
Repository
DRIMA
100
Disentangling Sources of Risk for Distributional Multi-Agent Reinforcement Learning
-
DIQL
93.8
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DDN
90.6
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DMIX
100
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
MADDPG
100
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments
QTRAN
100
QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning
IQL
93.8
The StarCraft Multi-Agent Challenges+ : Learning of Multi-Stage Tasks and Environmental Factors without Precise Reward Functions
QMIX
96.9
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
COMA
28.1
Counterfactual Multi-Agent Policy Gradients
MASAC
37.5
Decomposed Soft Actor-Critic Method for Cooperative Multi-Agent Reinforcement Learning
VDN
96.9
Value-Decomposition Networks For Cooperative Multi-Agent Learning
0 of 11 row(s) selected.
Previous
Next