HyperAIHyperAI超神经
首页资讯论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. SMAC+
  4. Smac On Smac Def Infantry Sequential

Smac On Smac Def Infantry Sequential

评估指标

Median Win Rate

评测结果

各个模型在此基准测试上的表现结果

模型名称
Median Win Rate
Paper TitleRepository
DRIMA100Disentangling Sources of Risk for Distributional Multi-Agent Reinforcement Learning-
DIQL93.8DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DDN90.6DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DMIX100DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
MADDPG100Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments
QTRAN100QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning
IQL93.8The StarCraft Multi-Agent Challenges+ : Learning of Multi-Stage Tasks and Environmental Factors without Precise Reward Functions
QMIX96.9QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
COMA28.1Counterfactual Multi-Agent Policy Gradients
MASAC37.5Decomposed Soft Actor-Critic Method for Cooperative Multi-Agent Reinforcement Learning
VDN96.9Value-Decomposition Networks For Cooperative Multi-Agent Learning
0 of 11 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili