HyperAIHyperAI超神经
首页资讯最新论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. SMAC+
  4. Smac On Smac Def Armored Sequential

Smac On Smac Def Armored Sequential

评估指标

Median Win Rate

评测结果

各个模型在此基准测试上的表现结果

模型名称
Median Win Rate
Paper TitleRepository
QTRAN93.8QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning
VDN96.9Value-Decomposition Networks For Cooperative Multi-Agent Learning
QMIX0.0QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
MASAC0.0Decomposed Soft Actor-Critic Method for Cooperative Multi-Agent Reinforcement Learning
DRIMA100Disentangling Sources of Risk for Distributional Multi-Agent Reinforcement Learning-
IQL9.4The StarCraft Multi-Agent Challenges+ : Learning of Multi-Stage Tasks and Environmental Factors without Precise Reward Functions
DDN71.9DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
COMA0.0Counterfactual Multi-Agent Policy Gradients
MADDPG90.6Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments
DIQL53.1DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DMIX81.3DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
0 of 11 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili