HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Smac 1
Smac On Smac Def Armored Sequential
Smac On Smac Def Armored Sequential
评估指标
Median Win Rate
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Median Win Rate
Paper Title
Repository
QTRAN
93.8
QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning
VDN
96.9
Value-Decomposition Networks For Cooperative Multi-Agent Learning
QMIX
0.0
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
MASAC
0.0
Decomposed Soft Actor-Critic Method for Cooperative Multi-Agent Reinforcement Learning
DRIMA
100
Disentangling Sources of Risk for Distributional Multi-Agent Reinforcement Learning
-
IQL
9.4
The StarCraft Multi-Agent Challenges+ : Learning of Multi-Stage Tasks and Environmental Factors without Precise Reward Functions
DDN
71.9
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
COMA
0.0
Counterfactual Multi-Agent Policy Gradients
MADDPG
90.6
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments
DIQL
53.1
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DMIX
81.3
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
0 of 11 row(s) selected.
Previous
Next