HyperAI超神经

Quantization On Imagenet

评估指标

Top-1 Accuracy (%)

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称Top-1 Accuracy (%)
training-multi-bit-quantized-and-binarized71.5
hmq-hardware-friendly-mixed-precision76
hmq-hardware-friendly-mixed-precision75.45
fq-vit-fully-quantized-vision-transformer71.61
fq-vit-fully-quantized-vision-transformer82.71
fq-vit-fully-quantized-vision-transformer83.31
fq-vit-fully-quantized-vision-transformer81.20
hptq-hardware-friendly-post-training73.356
r-2-range-regularization-for-model68.45
hptq-hardware-friendly-post-training71.46
learned-step-size-quantization76.7
hptq-hardware-friendly-post-training74.216
fq-vit-fully-quantized-vision-transformer80.51
multi-prize-lottery-ticket-hypothesis-finding-174.03
learned-step-size-quantization77.878
fq-vit-fully-quantized-vision-transformer85.03
r-2-range-regularization-for-model69.79
lsq-improving-low-bit-quantization-through73.8
learned-step-size-quantization77.34
lsq-improving-low-bit-quantization-through71.7
hptq-hardware-friendly-post-training77.092
hptq-hardware-friendly-post-training78.972
hmq-hardware-friendly-mixed-precision70.9
hmq-hardware-friendly-mixed-precision76.4
fq-vit-fully-quantized-vision-transformer82.97
r-2-range-regularization-for-model69.64
fq-vit-fully-quantized-vision-transformer79.17