HyperAI超神经

Pose Estimation On Coco Test Dev

评估指标

AP
AP50
AP75
APL
APM
AR

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称APAP50AP75APLAPMAR
simple-baselines-for-human-pose-estimation73.791.981.18070.379
mask-r-cnn63.187.368.771.4--
deep-multi-task-networks-for-occluded75.790.376.379.580.7-
omnipose-a-multi-scale-framework-for-multi76.492.683.782.672.681.2
revisiting-unreasonable-effectiveness-of-data64.485.770.769.861.8-
lite-hrnet-a-lightweight-high-resolution69.790.777.575.066.975.4
multi-hypothesis-pose-networks-rethinking-top75.792.483.381.271.480.5
2103-1532072.290.980.178.869.1-
posefix-model-agnostic-general-human-pose74.791.281.981.271.179.9
rethinking-on-multi-stage-networks-for-human76.193.483.881.572.381.6
transpose-towards-explainable-human-pose7592.282.381.171.3-
the-devil-is-in-the-details-delving-into76.592.78473.082.481.6
distribution-aware-coordinate-representation77.492.684.683.773.682.3
realtime-multi-person-2d-pose-estimation61.884.967.568.257.166.5
vitpose-simple-vision-transformer-baselines81.195.088.286.077.885.6
vitpose-simple-vision-transformer-baselines80.994.888.185.977.585.4
rethinking-keypoint-representations-modeling70.391.277.876.866.377.7
rmpe-regional-multi-person-pose-estimation72.389.279.178.668.0-
cascaded-pyramid-network-for-multi-person72.191.480.077.2-78.5
yolo-pose-enhancing-yolo-for-multi-person-90.3----
simple-pose-rethinking-and-improving-a-bottom68.1--70.566.888.2
revealing-the-dark-secrets-of-masked-image77.2-----
human-pose-as-compositional-tokens78.392.985.9---
on-the-calibration-of-human-pose-estimation------
learning-delicate-local-representations-for78.694.386.675.583.383.8
vipnas-efficient-video-pose-estimation-via70.390.778.875.567.377.3
deep-high-resolution-representation-learning7792.784.583.173.482
lite-hrnet-a-lightweight-high-resolution66.989.474.472.264.072.6
learning-delicate-local-representations-for79.294.487.176.183.884.1
hrformer-high-resolution-transformer-for76.292.783.882.372.581.2
dite-hrnet-dynamic-lightweight-high70.690.878.276.167.476.4
模型 3270.8-----
dpit-dual-pipeline-integrated-transformer-for74.691.982.180.671.379.9
vipnas-efficient-video-pose-estimation-via73.991.78279.570.580.4
revealing-the-dark-secrets-of-masked-image76.7-----
rethinking-keypoint-representations-modeling63.888.470.471.758.671.2
rethinking-keypoint-representations-modeling68.890.576.57664.376.3
towards-accurate-multi-person-pose-estimation64.985.571.370.0-69.7
towards-high-performance-human-keypoint78.993.88684.57583.6
rmpe-regional-multi-person-pose-estimation61.883.769.867.658.6-
openpose-realtime-multi-person-2d-pose64.286.270.168.861-
evopose2d-pushing-the-boundaries-of-2d-human76.892.584.382.573.581.7
polarized-self-attention-towards-high-quality-179.593.685.984.376.381.9
polarized-self-attention-towards-high-quality-178.993.685.883.676.181.4
directpose-direct-end-to-end-multi-person63.386.769.471.257.8-
cascaded-pyramid-network-for-multi-person73.091.780.978.1-79.0