Node Classification On Non Homophilic 10
评估指标
1:1 Accuracy
评测结果
各个模型在此基准测试上的表现结果
比较表格
模型名称 | 1:1 Accuracy |
---|---|
non-local-graph-neural-networks | 29.5 ± 1.3 |
revisiting-heterophily-for-graph-neural | 35.49 ± 1.06 |
mixhop-higher-order-graph-convolution | 32.22 ± 2.34 |
revisiting-heterophily-for-graph-neural | 37.31 ± 1.09 |
revisiting-heterophily-for-graph-neural | 36.63 ± 0.84 |
revisiting-heterophily-for-graph-neural | 36.31 ± 1.2 |
non-local-graph-neural-networks | 37.9 ± 1.3 |
generalizing-graph-neural-networks-beyond | 35.70 ± 1.00 |
neural-sheaf-diffusion-a-topological | 37.79 ± 1.01 |
two-sides-of-the-same-coin-heterophily-and | 37.54 ± 1.56 |
geom-gcn-geometric-graph-convolutional-1 | 31.59 ± 1.15 |
revisiting-heterophily-for-graph-neural | 36.14 ± 1.44 |
two-sides-of-the-same-coin-heterophily-and | 35.16 ± 0.9 |
finding-global-homophily-in-graph-neural | 37.35 ± 1.30 |
neural-sheaf-diffusion-a-topological | 37.80 ± 1.22 |
deformable-graph-convolutional-networks | 37.07±0.79 |
simple-and-deep-graph-convolutional-networks-1 | 37.44 ± 1.30 |
finding-global-homophily-in-graph-neural | 37.70 ± 1.40 |
large-scale-learning-on-non-homophilous | 36.10 ± 1.55 |
revisiting-heterophily-for-graph-neural | 36.26 ± 1.34 |
revisiting-heterophily-for-graph-neural | 36.04 ± 0.83 |
neural-sheaf-diffusion-a-topological | 37.81 ± 1.15 |
non-local-graph-neural-networks | 31.6 ± 1.0 |
breaking-the-limit-of-graph-neural-networks | 36.53 ± 0.77 |
revisiting-heterophily-for-graph-neural | 37.09 ± 1.32 |
beyond-low-frequency-information-in-graph | 34.82 ± 1.35 |