HyperAI超神经
首页
资讯
最新论文
教程
数据集
百科
SOTA
LLM 模型天梯
GPU 天梯
顶会
开源项目
全站搜索
关于
中文
HyperAI超神经
Toggle sidebar
全站搜索…
⌘
K
首页
SOTA
Multi Hypotheses 3D Human Pose Estimation
Multi Hypotheses 3D Human Pose Estimation On
Multi Hypotheses 3D Human Pose Estimation On
评估指标
Average MPJPE (mm)
Average PMPJPE (mm)
Using 2D ground-truth joints
评测结果
各个模型在此基准测试上的表现结果
Columns
模型名称
Average MPJPE (mm)
Average PMPJPE (mm)
Using 2D ground-truth joints
Paper Title
Repository
GFPose (HPJ2D-000, S=200)
35.6
30.5
16.9
GFPose: Learning 3D Human Pose Prior with Gradient Fields
Li et al.
73.9
44.3
-
Weakly Supervised Generative Network for Multiple 3D Human Pose Hypotheses
cGNF xlarge w Lsample
48.5
-
-
Multi-hypothesis 3D human pose estimation metrics favor miscalibrated distributions
MDN
52.7
42.6
-
Generating Multiple Hypotheses for 3D Human Pose Estimation with Mixture Density Network
D3DP
35.4
-
No
Diffusion-Based 3D Human Pose Estimation with Multi-Hypothesis Aggregation
Sharma et al.
46.8
37.3
-
Monocular 3D Human Pose Estimation by Generation and Ordinal Ranking
GraphMDN
46.2
36.3
-
GraphMDN: Leveraging graph structure and deep learning to solve inverse problems
-
MHEntropy
-
36.8
-
MHEntropy: Entropy Meets Multiple Hypotheses for Pose and Shape Recovery
-
GFPose (HPJ2D-010, S=200)
35.1
-
-
GFPose: Learning 3D Human Pose Prior with Gradient Fields
cGNF w Lsample
53
-
-
Multi-hypothesis 3D human pose estimation metrics favor miscalibrated distributions
0 of 10 row(s) selected.
Previous
Next