HyperAI超神经

Learning With Noisy Labels On Cifar 10N 2

评估指标

Accuracy (mean)

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称Accuracy (mean)
generative-noisy-label-learning-by-implicit91.42
co-teaching-robust-training-of-deep-neural90.30
peer-loss-functions-learning-from-noisy88.76
generalized-cross-entropy-loss-for-training87.70
learning-with-instance-dependent-label-noise-194.88
early-learning-regularization-prevents94.20
making-deep-neural-networks-robust-to-label86.28
19060018987.71
combating-noisy-labels-by-agreement-a-joint90.21
robust-training-under-label-noise-by-over95.31
learning-with-instance-dependent-label-noise-189.91
making-deep-neural-networks-robust-to-label86.14
early-learning-regularization-prevents91.61
psscl-a-progressive-sample-selection96.21
dividemix-learning-with-noisy-labels-as-semi-190.90
模型 1686.46
clusterability-as-an-alternative-to-anchor90.75
does-label-smoothing-mitigate-label-noise89.35
understanding-generalized-label-smoothing90.37
imprecise-label-learning-a-unified-framework95.04
when-optimizing-f-divergence-is-robust-with-189.79
provably-end-to-end-label-noise-learning88.27
how-does-disagreement-help-generalization89.47