HyperAI超神经

Learning With Noisy Labels On Animal

评估指标

Accuracy
ImageNet Pretrained
Network

评测结果

各个模型在此基准测试上的表现结果

比较表格
模型名称AccuracyImageNet PretrainedNetwork
jigsaw-vit-learning-jigsaw-puzzles-in-vision89.0NODeiT-S
learning-with-feature-dependent-label-noise-a-179.4NOVgg19-BN
boosting-co-teaching-with-compression81.3NOVgg19-BN
learning-with-feature-dependent-label-noise-a-183.4NOVgg19-BN
cross-to-merge-training-with-class-balance85.9NOVgg-19-BN
boosting-co-teaching-with-compression81.3NOVgg19-BN
sure-survey-recipes-for-building-reliable-and89.0NOVgg19-BN
selfie-refurbishing-unclean-samples-for81.8NOVgg19-BN
psscl-a-progressive-sample-selection88.74NOVgg19-BN
dynamic-loss-for-robust-learning86.5NOVgg19-BN
instance-dependent-noisy-label-learning-via84.6NOVgg19-BN
s3-supervised-self-supervised-learning-under-188.5NOVgg19-BN
instance-dependent-noisy-label-learning-via84.7NOConvNeXt
compressing-features-for-learning-with-noisy84.1NOVgg19-BN
bootstrapping-the-relationship-between-images88.5NOVgg19-BN
scalable-penalized-regression-for-noise86.8NOVGG19-BN
generative-noisy-label-learning-by-implicit85.9NOVgg-19-BN
instance-dependent-noisy-label-learning-via82.3NOResNet