HyperAIHyperAI超神经
首页资讯论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 细粒度图像分类
  4. Fine Grained Image Classification On Oxford 1

Fine Grained Image Classification On Oxford 1

评估指标

Accuracy

评测结果

各个模型在此基准测试上的表现结果

模型名称
Accuracy
Paper TitleRepository
OmniVec299.6OmniVec2 - A Novel Transformer based Network for Large Scale Multimodal and Multitask Learning-
ALIGN96.19%Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision
AutoAugment88.98%AutoAugment: Learning Augmentation Policies from Data
TNT-B95.0%Transformer in Transformer
Bamboo (ViT-B/16)95.1%Bamboo: Building Mega-Scale Vision Dataset Continually with Human-Machine Synergy
DINOv2 (ViT-g/14, frozen model, linear eval)96.7DINOv2: Learning Robust Visual Features without Supervision
EfficientNet-B795.4%EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
OmniVec99.2OmniVec: Learning robust representations with cross modal sharing-
AutoFormer-S | 38494.9%AutoFormer: Searching Transformers for Visual Recognition
NAT-M1-Neural Architecture Transfer
ViT R26 + S/32 ( Augmented)96.28Towards Fine-grained Image Classification with Generative Adversarial Networks and Facial Landmark Detection
FixSENet-15494.8%Fixing the train-test resolution discrepancy
SEER (RegNet10B)85.3%Vision Models Are More Robust And Fair When Pretrained On Uncurated Images Without Supervision
IELT95.28%Fine-Grained Visual Classification via Internal Ensemble Learning Transformer-
0 of 14 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili