HyperAIHyperAI超神经
首页资讯论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 跨域少样本物体检测
  4. Cross Domain Few Shot Object Detection On 4

Cross Domain Few Shot Object Detection On 4

评估指标

mAP

评测结果

各个模型在此基准测试上的表现结果

模型名称
mAP
Paper TitleRepository
FSCE12.0FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding
DeFRCN12.1DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection
Detic-FT16.8Detecting Twenty-thousand Classes using Image-level Supervision
TFA w/cos11.8Frustratingly Simple Few-Shot Object Detection
Meta-RCNN11.2Meta-RCNN: Meta Learning for Few-Shot Object Detection-
BIOT(5-shot)18.0Balanced ID-OOD tradeoff transfer makes query based detectors good few shot learners-
CD-ViTO7.0Cross-Domain Few-Shot Object Detection via Enhanced Open-Set Object Detector
ViTDeT-FT15.8Exploring Plain Vision Transformer Backbones for Object Detection
DE-ViT-FT5.4Detect Everything with Few Examples
BIOT(10-shot)20.4Balanced ID-OOD tradeoff transfer makes query based detectors good few shot learners-
0 of 10 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili