HyperAIHyperAI超神经
首页资讯论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 跨域少样本物体检测
  4. Cross Domain Few Shot Object Detection On

Cross Domain Few Shot Object Detection On

评估指标

mAP

评测结果

各个模型在此基准测试上的表现结果

模型名称
mAP
Paper TitleRepository
Detic-FT12.0Detecting Twenty-thousand Classes using Image-level Supervision
TFA w/cos14.8Frustratingly Simple Few-Shot Object Detection
DeFRCN15.5DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection
ViTDeT-FT23.4Exploring Plain Vision Transformer Backbones for Object Detection
CD-ViTO60.5Cross-Domain Few-Shot Object Detection via Enhanced Open-Set Object Detector
BIOT(5-Shot)53.3Balanced ID-OOD tradeoff transfer makes query based detectors good few shot learners-
FSCE15.9FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding
Meta-RCNN14.0Meta-RCNN: Meta Learning for Few-Shot Object Detection-
DE-ViT-FT49.2Detect Everything with Few Examples
BIOT(10-Shot)58.4Balanced ID-OOD tradeoff transfer makes query based detectors good few shot learners-
0 of 10 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili