HyperAIHyperAI超神经
首页资讯最新论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 持续学习
  4. Continual Learning On Visual Domain Decathlon

Continual Learning On Visual Domain Decathlon

评估指标

decathlon discipline (Score)

评测结果

各个模型在此基准测试上的表现结果

模型名称
decathlon discipline (Score)
Paper TitleRepository
Res. adapt. finetune all2643Learning multiple visual domains with residual adapters-
Piggyback2838Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights-
Res. adapt.2118Learning multiple visual domains with residual adapters-
DAN2851Incremental Learning Through Deep Adaptation-
Res. adapt. decay2621Learning multiple visual domains with residual adapters-
NetTailor3744NetTailor: Tuning the Architecture, Not Just the Weights-
Res. adapt. dom-pred2503Learning multiple visual domains with residual adapters-
Series Res. adapt.3159Efficient parametrization of multi-domain deep neural networks-
LwF2515Learning without Forgetting-
BN adapt.1363Universal representations:The missing link between faces, text, planktons, and cat breeds-
Res. adapt. (large)3131Learning multiple visual domains with residual adapters-
Depthwise Sharing3234Depthwise Convolution is All You Need for Learning Multiple Visual Domains-
Depthwise Soft Sharing3507Depthwise Convolution is All You Need for Learning Multiple Visual Domains-
Parallel Res. adapt.3412Efficient parametrization of multi-domain deep neural networks-
0 of 14 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili