HyperAI超神经

Complex Query Answering On Fb15K

评估指标

MRR 1p
MRR 2i
MRR 2p
MRR 2u
MRR 3i
MRR 3p
MRR ip
MRR pi
MRR up

评测结果

各个模型在此基准测试上的表现结果

模型名称
MRR 1p
MRR 2i
MRR 2p
MRR 2u
MRR 3i
MRR 3p
MRR ip
MRR pi
MRR up
Paper TitleRepository
QTO0.8950.8030.6740.7670.8360.5880.7400.7520.613Answering Complex Logical Queries on Knowledge Graphs via Query Computation Tree Optimization
CQD-CO---------Complex Query Answering with Neural Link Predictors
GNN-QE0.8850.7970.6930.7410.8350.5870.7040.6990.610Neural-Symbolic Models for Logical Queries on Knowledge Graphs
CQDA0.8920.7610.6450.6840.7940.5790.7060.7010.579Adapting Neural Link Predictors for Data-Efficient Complex Query Answering-
GQE0.5460.3970.1530.2210.5140.1080.1910.2760.116Embedding Logical Queries on Knowledge Graphs
Q2B0.680.5510.210.3510.6650.1420.2610.3940.167Query2box: Reasoning over Knowledge Graphs in Vector Space using Box Embeddings
CQD0.8920.7710.6530.7230.806-0.716--Complex Query Answering with Neural Link Predictors
CQD-Beam---------Complex Query Answering with Neural Link Predictors
BetaE0.6510.5580.2570.4010.6650.2470.2810.4390.252Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs
0 of 9 row(s) selected.