HyperAIHyperAI超神经
首页资讯论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 异常检测
  4. Anomaly Detection On Unlabeled Cifar 10 Vs

Anomaly Detection On Unlabeled Cifar 10 Vs

评估指标

AUROC

评测结果

各个模型在此基准测试上的表现结果

模型名称
AUROC
Paper TitleRepository
Input Complexity (PixelCNN++)53.5Input complexity and out-of-distribution detection with likelihood-based generative models
SSD89.6SSD: A Unified Framework for Self-Supervised Outlier Detection
MeanShifted90.0Mean-Shifted Contrastive Loss for Anomaly Detection
Likelihood (Glow)58.2Input complexity and out-of-distribution detection with likelihood-based generative models
PsudoLabels ResNet-1890.8Out-of-Distribution Detection Without Class Labels-
CSI89.3CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
PsudoLabels ViT96.7Out-of-Distribution Detection Without Class Labels-
PsudoLabels ResNet-15293.3Out-of-Distribution Detection Without Class Labels-
Likelihood (PixelCNN++)52.6Input complexity and out-of-distribution detection with likelihood-based generative models
SCAN Features90.2Out-of-Distribution Detection Without Class Labels-
Input Complexity (Glow)73.6Input complexity and out-of-distribution detection with likelihood-based generative models
GOAD89.2Classification-Based Anomaly Detection for General Data
MTL82.92Shifting Transformation Learning for Out-of-Distribution Detection-
0 of 13 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili