HyperAIHyperAI超神经
首页资讯论文教程数据集百科SOTALLM 模型天梯GPU 天梯顶会
全站搜索
关于
中文
HyperAIHyperAI超神经
  1. 首页
  2. SOTA
  3. 异常检测
  4. Anomaly Detection On One Class Imagenet 30

Anomaly Detection On One Class Imagenet 30

评估指标

AUROC

评测结果

各个模型在此基准测试上的表现结果

模型名称
AUROC
Paper TitleRepository
RotNet + Translation77.9Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
RotNet + Translation + Self-Attention84.8Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
RotNet65.3Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
CSI91.6CSI: Novelty Detection via Contrastive Learning on Distributionally Shifted Instances
RotNet + Translation + Self-Attention + Resize85.7Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
FCDD91Explainable Deep One-Class Classification
CLIP (Zero Shot)99.88Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
BCE-Clip (OE)99.90Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
RotNet + Self-Attention81.6Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Supervised (OE)56.1Using Self-Supervised Learning Can Improve Model Robustness and Uncertainty
Binary Cross Entropy (OE)97.7Exposing Outlier Exposure: What Can Be Learned From Few, One, and Zero Outlier Images
0 of 11 row(s) selected.
HyperAI

学习、理解、实践,与社区一起构建人工智能的未来

中文

关于

关于我们数据集帮助

产品

资讯教程数据集百科

链接

TVM 中文Apache TVMOpenBayes

© HyperAI超神经

津ICP备17010941号-1京公网安备11010502038810号京公网安备11010502038810号
TwitterBilibili