2 个月前
Llama 2:开放的基础模型和微调的聊天模型
Hugo Touvron; Louis Martin; Kevin Stone; Peter Albert; Amjad Almahairi; Yasmine Babaei; Nikolay Bashlykov; Soumya Batra; Prajjwal Bhargava; Shruti Bhosale; Dan Bikel; Lukas Blecher; Cristian Canton Ferrer; Moya Chen; Guillem Cucurull; David Esiobu; Jude Fernandes; Jeremy Fu; Wenyin Fu; Brian Fuller; Cynthia Gao; Vedanuj Goswami; Naman Goyal; Anthony Hartshorn; Saghar Hosseini; Rui Hou; Hakan Inan; Marcin Kardas; Viktor Kerkez; Madian Khabsa; Isabel Kloumann; Artem Korenev; Punit Singh Koura; Marie-Anne Lachaux; Thibaut Lavril; Jenya Lee; Diana Liskovich; Yinghai Lu; Yuning Mao; Xavier Martinet; Todor Mihaylov; Pushkar Mishra; Igor Molybog; Yixin Nie; Andrew Poulton; Jeremy Reizenstein; Rashi Rungta; Kalyan Saladi; Alan Schelten; Ruan Silva; Eric Michael Smith; Ranjan Subramanian; Xiaoqing Ellen Tan; Binh Tang; Ross Taylor; Adina Williams; Jian Xiang Kuan; Puxin Xu; Zheng Yan; Iliyan Zarov; Yuchen Zhang; Angela Fan; Melanie Kambadur; Sharan Narang; Aurelien Rodriguez; Robert Stojnic; Sergey Edunov; Thomas Scialom

摘要
在本研究中,我们开发并发布了Llama 2,这是一系列预训练和微调的大规模语言模型(LLMs),参数规模从70亿到700亿不等。我们的微调模型称为Llama 2-Chat,专门针对对话应用场景进行了优化。在我们测试的大多数基准上,这些模型的表现优于开源聊天模型,并且根据我们在有用性和安全性方面的人类评估结果,它们可能成为闭源模型的合适替代品。我们详细描述了对Llama 2-Chat进行微调和安全改进的方法,以帮助社区在此基础上进一步发展,并促进大规模语言模型(LLMs)负责任的研发。