HyperAI
HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
시각적 질문 응답 (VQA)
Visual Question Answering On Vqa V2 Val
Visual Question Answering On Vqa V2 Val
평가 지표
Accuracy
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Accuracy
Paper Title
Repository
MetaLM
41.1
Language Models are General-Purpose Interfaces
BLIP-2 ViT-G FlanT5 XXL (zero-shot)
65.2
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
BLIP-2 ViT-G OPT 6.7B (zero-shot)
54.3
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
Frozen
29.5
Multimodal Few-Shot Learning with Frozen Language Models
-
BLIP-2 ViT-G FlanT5 XL (zero-shot)
63.1
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
BLIP-2 ViT-L OPT 2.7B (zero-shot)
50.1
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
VLKD(ViT-B/16)
38.6
Enabling Multimodal Generation on CLIP via Vision-Language Knowledge Distillation
-
BLIP-2 ViT-L FlanT5 XL (zero-shot)
62.6
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
PNP-VQA
63.3
Plug-and-Play VQA: Zero-shot VQA by Conjoining Large Pretrained Models with Zero Training
Few VLM (zero-shot)
47.7
A Good Prompt Is Worth Millions of Parameters: Low-resource Prompt-based Learning for Vision-Language Models
BLIP-2 ViT-G OPT 2.7B (zero-shot)
53.5
BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models
0 of 11 row(s) selected.
Previous
Next
Visual Question Answering On Vqa V2 Val | SOTA | HyperAI초신경