Visual Question Answering On Vizwiz 2020

평가 지표

average_precision
f1_score

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
average_precision
f1_score
Paper TitleRepository
VT-Transformer (MUL)76.9667.26--
VWTest126.8442.32--
CLIP-Ensemble84.13-Less Is More: Linear Layers on CLIP Features as Powerful VizWiz Model-
VT-Transformer (CAT)74.9166.7--
BERT-RG-Regression52.2241.85--
CLIP-Single82.86-Less Is More: Linear Layers on CLIP Features as Powerful VizWiz Model-
0 of 6 row(s) selected.
Visual Question Answering On Vizwiz 2020 | SOTA | HyperAI초신경