HyperAI
HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
시각적 질문 응답 (VQA)
Visual Question Answering On Clevr
Visual Question Answering On Clevr
평가 지표
Accuracy
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Accuracy
Paper Title
Repository
NS-VQA (1K programs)
99.8
Neural-Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding
MDETR
99.7
MDETR -- Modulated Detection for End-to-End Multi-Modal Understanding
CNN + LSTM + RN
95.50
A simple neural network module for relational reasoning
TbD + reg + hres
99.1
Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning
OCCAM (ours)
99.4
Interpretable Visual Reasoning via Induced Symbolic Space
CNN + LSTM + RN + HAN
98.8
Learning Visual Question Answering by Bootstrapping Hard Attention
-
MAC
98.9
Compositional Attention Networks for Machine Reasoning
IEP-700K
96.9
Inferring and Executing Programs for Visual Reasoning
NeSyCoCo
99.7
NeSyCoCo: A Neuro-Symbolic Concept Composer for Compositional Generalization
single-hop + LCGN (ours)
97.9
Language-Conditioned Graph Networks for Relational Reasoning
NS-CL
98.9
The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision
QGHC+Att+Concat
65.90
Question-Guided Hybrid Convolution for Visual Question Answering
-
XNM-Det supervised
97.7
Explainable and Explicit Visual Reasoning over Scene Graphs
DDRprog*
98.3
DDRprog: A CLEVR Differentiable Dynamic Reasoning Programmer
-
CNN+GRU+FiLM
97.7
FiLM: Visual Reasoning with a General Conditioning Layer
0 of 15 row(s) selected.
Previous
Next
Visual Question Answering On Clevr | SOTA | HyperAI초신경