HyperAI
HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
시각적 질문 응답 (VQA)
Visual Question Answering On A Okvqa
Visual Question Answering On A Okvqa
평가 지표
DA VQA Score
MC Accuracy
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
DA VQA Score
MC Accuracy
Paper Title
Repository
ViLBERT - OK-VQA
9.2
34.1
ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks
GPV-2
40.7
53.7
Webly Supervised Concept Expansion for General Purpose Vision Models
-
PromptCap
59.6
73.2
PromptCap: Prompt-Guided Task-Aware Image Captioning
A Simple Baseline for KB-VQA
57.5
-
A Simple Baseline for Knowledge-Based Visual Question Answering
-
VLC-BERT
38.05
-
VLC-BERT: Visual Question Answering with Contextualized Commonsense Knowledge
PaLI-X-VPD
68.2
80.4
Visual Program Distillation: Distilling Tools and Programmatic Reasoning into Vision-Language Models
-
LXMERT
25.9
41.6
LXMERT: Learning Cross-Modality Encoder Representations from Transformers
KRISP
42.2
42.2
KRISP: Integrating Implicit and Symbolic Knowledge for Open-Domain Knowledge-Based VQA
-
Prophet
58.5
75.1
Prophet: Prompting Large Language Models with Complementary Answer Heuristics for Knowledge-based Visual Question Answering
MC-CoT
-
71
Boosting the Power of Small Multimodal Reasoning Models to Match Larger Models with Self-Consistency Training
Pythia
21.9
40.1
Pythia v0.1: the Winning Entry to the VQA Challenge 2018
SMoLA-PaLI-X Specialist Model
70.55
83.75
Omni-SMoLA: Boosting Generalist Multimodal Models with Soft Mixture of Low-rank Experts
-
ViLBERT
25.9
41.5
ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks
ViLBERT - VQA
12.0
42.1
ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks
HYDRA
-
56.35
HYDRA: A Hyper Agent for Dynamic Compositional Visual Reasoning
0 of 15 row(s) selected.
Previous
Next
Visual Question Answering On A Okvqa | SOTA | HyperAI초신경