HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
Video Super Resolution
Video Super Resolution On Msu Video Upscalers
Video Super Resolution On Msu Video Upscalers
평가 지표
LPIPS
PSNR
SSIM
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
LPIPS
PSNR
SSIM
Paper Title
Repository
SwinIR-Real-B
0.183
28.86
0.830
SwinIR: Image Restoration Using Swin Transformer
ESRGAN
-
27.29
0.936
ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks
LGFN
-
27.42
0.939
Local-Global Fusion Network for Video Super-Resolution
VEAI-GCG-5
0.292
31.01
0.859
-
-
ESPCN
-
26.25
0.926
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
VEAI-ALQ-13
0.206
31.00
0.890
-
-
VEAI-ASD-2
0.218
30.55
0.868
-
-
VEAI-GHQ-5
0.210
30.55
0.869
-
-
RealEsrgan-F
0.185
28.82
0.850
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data
Davinci SupScl
0.369
30.10
0.854
-
-
GP-Lines
0.212
29.01
0.822
-
-
DBVSR
-
27.28
0.937
Deep Blind Video Super-resolution
VEAI-AD-2
0.195
31.15
0.898
-
-
BasicVsr++RD
0.334
30.98
0.881
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment
iSeeBetter
-
27.42
0.939
iSeeBetter: Spatio-Temporal Video Super Resolution using Recurrent-Generative Back-Projection Networks
VEAI-AAM-10
0.278
30.76
0.838
-
-
BSRGAN
0.177
29.27
0.836
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution
SRMD
0.349
30.96
0.852
Learning a Single Convolutional Super-Resolution Network for Multiple Degradations
SwinIR-Real-S
0.189
28.55
0.845
SwinIR: Image Restoration Using Swin Transformer
RealEsrgan
0.181
29.14
0.855
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data
0 of 48 row(s) selected.
Previous
Next