HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
Video Polyp Segmentation
Video Polyp Segmentation On Sun Seg Hard
Video Polyp Segmentation On Sun Seg Hard
평가 지표
Dice
S-Measure
Sensitivity
mean E-measure
mean F-measure
weighted F-measure
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Dice
S-Measure
Sensitivity
mean E-measure
mean F-measure
weighted F-measure
Paper Title
Repository
ACSNet
0.708
0.783
0.618
0.787
0.684
0.636
-
-
PNSNet
0.675
0.767
0.579
0.755
0.656
0.609
Progressively Normalized Self-Attention Network for Video Polyp Segmentation
DCF
0.317
0.514
0.364
0.522
0.303
0.263
Dynamic Context-Sensitive Filtering Network for Video Salient Object Detection
-
AMD
0.252
0.472
0.213
0.527
0.141
0.128
The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos
PraNet
0.598
0.717
0.512
0.735
0.607
0.544
PraNet: Parallel Reverse Attention Network for Polyp Segmentation
UNet++
-
-
0.467
-
-
-
UNet++: A Nested U-Net Architecture for Medical Image Segmentation
SALI
0.822
0.874
0.830
0.920
0.822
0.790
SALI: Short-term Alignment and Long-term Interaction Network for Colonoscopy Video Polyp Segmentation
MAT
0.712
0.785
0.579
0.755
0.645
0.578
MATNet: Motion-Attentive Transition Network for Zero-Shot Video Object Segmentation
COSNet
0.606
0.670
0.380
0.627
0.506
0.443
See More, Know More: Unsupervised Video Object Segmentation with Co-Attention Siamese Networks
AutoSAM
0.759
0.822
0.726
0.866
0.764
0.714
AutoSAM: Adapting SAM to Medical Images by Overloading the Prompt Encoder
-
2/3D
0.706
0.786
0.607
0.775
0.688
0.634
-
-
SANet
0.598
0.706
0.505
0.743
0.580
0.526
Shallow Attention Network for Polyp Segmentation
PNS+
0.737
0.797
0.623
0.793
0.709
0.653
Video Polyp Segmentation: A Deep Learning Perspective
PCSA
0.584
0.682
0.415
0.660
0.510
0.443
-
-
LGRNet
0.865
-
-
-
-
-
LGRNet: Local-Global Reciprocal Network for Uterine Fibroid Segmentation in Ultrasound Videos
-
YOLO-SAM 2
0.902
0.894
0.852
0.941
0.932
-
Self-Prompting Polyp Segmentation in Colonoscopy using Hybrid Yolo-SAM 2 Model
FSNet
0.699
0.724
0.491
0.694
0.611
0.541
Full-Duplex Strategy for Video Object Segmentation
UNet
-
-
0.429
-
-
-
U-Net: Convolutional Networks for Biomedical Image Segmentation
0 of 18 row(s) selected.
Previous
Next