HyperAI초신경

Video Polyp Segmentation On Sun Seg Easy

평가 지표

Dice
S measure
Sensitivity
mean E-measure
mean F-measure
weighted F-measure

평가 결과

이 벤치마크에서 각 모델의 성능 결과

비교 표
모델 이름DiceS measureSensitivitymean E-measuremean F-measureweighted F-measure
progressively-normalized-self-attention0.6760.7670.5740.7440.6640.616
self-prompting-polyp-segmentation-in0.900.983.793.893.8-
full-duplex-strategy-for-video-object0.7020.7250.4930.6950.6300.551
모델 40.7130.7820.6010.7790.6880.642
u-net-convolutional-networks-for-biomedical--0.420---
lgrnet-local-global-reciprocal-network-for0.853-----
dynamic-context-sensitive-filtering-network0.3250.5230.3400.5140.3120.270
see-more-know-more-unsupervised-video-object-10.5960.6540.3590.6000.4960.431
video-polyp-segmentation-a-deep-learning0.7560.8060.6300.7980.7300.676
matnet-motion-attentive-transition-network0.7100.7700.5420.7370.6410.575
autosam-adapting-sam-to-medical-images-by0.7530.8150.6720.8550.7740.716
shallow-attention-network-for-polyp0.6490.7200.5210.7450.6340.566
모델 130.5920.6800.3980.6600.5190.451
unet-a-nested-u-net-architecture-for-medical--0.457---
pranet-parallel-reverse-attention-network-for0.6210.7330.5240.7530.6320.572
모델 160.7220.7860.6030.7770.7080.652
the-emergence-of-objectness-learning-zero0.2660.4740.2220.5330.1460.133
sali-short-term-alignment-and-long-term-10.8250.8700.8110.9200.8310.794