HyperAI초신경

Video Frame Interpolation On Msu Video Frame

평가 지표

LPIPS
MS-SSIM
PSNR
SSIM
VMAF

평가 결과

이 벤치마크에서 각 모델의 성능 결과

비교 표
모델 이름LPIPSMS-SSIMPSNRSSIMVMAF
video-frame-interpolation-with-densely0.0210.96129.450.94972.12
video-frame-interpolation-with-transformer0.0440.94228.340.91768.87
xvfi-extreme-video-frame-interpolation0.0610.93327.350.91363.47
enhanced-bi-directional-motion-estimation-for0.0240.95828.770.93168.20
learning-spatial-transform-for-video-frame0.0580.91324.990.90360.19
a-unified-pyramid-recurrent-network-for-video0.0250.96229.730.95171.34
featureflow-robust-video-interpolation-via0.0600.91124.480.90260.70
featureflow-robust-video-interpolation-via0.0700.89423.280.88958.11
bmbc-bilateral-motion-estimation-with-10.0710.89823.340.88559.27
ifrnet-intermediate-feature-refine-network0.0370.94328.040.92166.98
ifrnet-intermediate-feature-refine-network0.0490.93127.450.90863.43
video-frame-interpolation-via-adaptive--26.36--
rife-real-time-intermediate-flow-estimation0.0390.93927.150.91466.33
asymmetric-bilateral-motion-estimation-for0.0390.94527.990.91968.10
xvfi-extreme-video-frame-interpolation0.0490.95527.860.92167.25
video-frame-interpolation-via-residue0.0720.90225.760.89359.82
cdfi-compression-driven-network-design-for0.0510.92626.990.90861.72
learning-cross-video-neural-representations0.0290.94628.010.92067.07
film-frame-interpolation-for-large-motion0.0330.94828.110.92868.68
extracting-motion-and-appearance-via-inter0.0220.96529.890.95371.71
learning-spatial-transform-for-video-frame0.6920.88323.170.89158.29
super-slomo-high-quality-estimation-of0.0680.92426.690.90461.35
ifrnet-intermediate-feature-refine-network0.0480.93227.670.90964.16
enhanced-bi-directional-motion-estimation-for0.0280.95728.560.92869.37