HyperAI
HyperAI초신경
홈
플랫폼
문서
뉴스
연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
서비스 약관
개인정보 처리방침
한국어
HyperAI
HyperAI초신경
Toggle Sidebar
전체 사이트 검색...
⌘
K
Command Palette
Search for a command to run...
플랫폼
홈
SOTA
비디오 프레임 보간법
Video Frame Interpolation On Msu Video Frame
Video Frame Interpolation On Msu Video Frame
평가 지표
LPIPS
MS-SSIM
PSNR
SSIM
VMAF
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
LPIPS
MS-SSIM
PSNR
SSIM
VMAF
Paper Title
EMA-VFI
0.022
0.965
29.89
0.953
71.71
Extracting Motion and Appearance via Inter-Frame Attention for Efficient Video Frame Interpolation
UPR-Net LARGE
0.025
0.962
29.73
0.951
71.34
A Unified Pyramid Recurrent Network for Video Frame Interpolation
DQBC
0.021
0.961
29.45
0.949
72.12
Video Frame Interpolation with Densely Queried Bilateral Correlation
EBME-H
0.024
0.958
28.77
0.931
68.20
Enhanced Bi-directional Motion Estimation for Video Frame Interpolation
EBME
0.028
0.957
28.56
0.928
69.37
Enhanced Bi-directional Motion Estimation for Video Frame Interpolation
VFIformer
0.044
0.942
28.34
0.917
68.87
Video Frame Interpolation with Transformer
FILM
0.033
0.948
28.11
0.928
68.68
FILM: Frame Interpolation for Large Motion
IFRNet_large
0.037
0.943
28.04
0.921
66.98
IFRNet: Intermediate Feature Refine Network for Efficient Frame Interpolation
CURE
0.029
0.946
28.01
0.920
67.07
Learning Cross-Video Neural Representations for High-Quality Frame Interpolation
ABME
0.039
0.945
27.99
0.919
68.10
Asymmetric Bilateral Motion Estimation for Video Frame Interpolation
XVFI (S_{tst}=5)
0.049
0.955
27.86
0.921
67.25
XVFI: eXtreme Video Frame Interpolation
IFRNet_base
0.048
0.932
27.67
0.909
64.16
IFRNet: Intermediate Feature Refine Network for Efficient Frame Interpolation
IFRNet_small
0.049
0.931
27.45
0.908
63.43
IFRNet: Intermediate Feature Refine Network for Efficient Frame Interpolation
XVFI (S_{tst}=3)
0.061
0.933
27.35
0.913
63.47
XVFI: eXtreme Video Frame Interpolation
RIFE
0.039
0.939
27.15
0.914
66.33
Real-Time Intermediate Flow Estimation for Video Frame Interpolation
CDFI
0.051
0.926
26.99
0.908
61.72
CDFI: Compression-Driven Network Design for Frame Interpolation
Super-SloMo
0.068
0.924
26.69
0.904
61.35
Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation
SepConv-L1
-
-
26.36
-
-
Video Frame Interpolation via Adaptive Separable Convolution
RRIN
0.072
0.902
25.76
0.893
59.82
Video Frame Interpolation via Residue Refinement
AdaCoF_f
0.058
0.913
24.99
0.903
60.19
AdaCoF: Adaptive Collaboration of Flows for Video Frame Interpolation
0 of 24 row(s) selected.
Previous
Next
Video Frame Interpolation On Msu Video Frame | SOTA | HyperAI초신경