HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
Text To Sql
Text To Sql On Bird Big Bench For Large Scale
Text To Sql On Bird Big Bench For Large Scale
평가 지표
Execution Accuracy % (Dev)
Execution Accuracy % (Test)
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Execution Accuracy % (Dev)
Execution Accuracy % (Test)
Paper Title
Repository
PURPLE + RED + GPT-4o
68.12
70.21
-
-
MSc-SQL
65.6
-
MSc-SQL: Multi-Sample Critiquing Small Language Models For Text-To-SQL Translation
Dubo-SQL, v1
59.71
60.71
-
-
SFT CodeS-15B
58.47
60.37
-
-
PURPLE + GPT-4o
62.97
64.51
-
-
DAIL-SQL + GPT-4
54.76
57.41
Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation
ChatGPT (Baseline)
37.22
39.30
Can LLM Already Serve as A Database Interface? A BIg Bench for Large-Scale Database Grounded Text-to-SQLs
-
SENSE
55.48
63.39
-
-
ExSL + granite-34b-code
72.43
73.17
-
-
Human Performance
-
-
Can LLM Already Serve as A Database Interface? A BIg Bench for Large-Scale Database Grounded Text-to-SQLs
-
SENSE-13B
55.48
63.39
-
-
Claude-2 (Baseline)
42.70
49.02
Can LLMs Effectively Leverage Graph Structural Information through Prompts, and Why?
SCL-SQL
64.73
65.23
-
-
Arcwise + GPT-4o
67.99
66.21
-
-
ByteBrain
65.45
68.87
-
-
MCS-SQL + GPT-4
63.36
65.45
-
-
Codex (Baseline)
34.35
36.47
Can LLM Already Serve as A Database Interface? A BIg Bench for Large-Scale Database Grounded Text-to-SQLs
-
CHASE-SQL + Gemini
73.14
74.06
CHASE-SQL: Multi-Path Reasoning and Preference Optimized Candidate Selection in Text-to-SQL
-
XiYan-SQL
73.34
75.63
A Preview of XiYan-SQL: A Multi-Generator Ensemble Framework for Text-to-SQL
OpenSearch-SQL+ v2 + GPT-4o
69.3
72.28
-
-
0 of 40 row(s) selected.
Previous
Next