HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 표면 법선 추정
  4. Surface Normals Estimation On Stanford Orb

Surface Normals Estimation On Stanford Orb

평가 지표

Cosine Distance

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
Cosine Distance
Paper TitleRepository
NeRD0.28NeRD: Neural Reflectance Decomposition from Image Collections
NeRFactor0.29NeRFactor: Neural Factorization of Shape and Reflectance Under an Unknown Illumination
Neural-PBIR0.06Neural-PBIR Reconstruction of Shape, Material, and Illumination-
NVDiffRecMC0.04Shape, Light, and Material Decomposition from Images using Monte Carlo Rendering and Denoising
InvRender0.06NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field Indirect Illumination
NVDiffRec0.06Extracting Triangular 3D Models, Materials, and Lighting From Images
PhySG0.17PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Material Editing and Relighting-
0 of 7 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili