HyperAI초신경

Speech Recognition On Wsj Eval92

평가 지표

Word Error Rate (WER)

평가 결과

이 벤치마크에서 각 모델의 성능 결과

비교 표
모델 이름Word Error Rate (WER)
end-to-end-speech-recognition-using-lattice3.0
espresso-a-fast-end-to-end-neural-speech3.4
bigssl-exploring-the-frontier-of-large-scale1.3
모델 45.6
purely-sequence-trained-neural-networks-for2.32
efficient-neural-architecture-search-for-end2.77
jasper-an-end-to-end-convolutional-neural6.9
deep-recurrent-neural-networks-for-acoustic3.5
speechstew-simply-mix-all-available-speech1.3
모델 103.6
fully-convolutional-speech-recognition3.5
cat-a-ctc-crf-based-asr-toolkit-bridging-the3.2
crf-based-single-stage-acoustic-modeling-with3.79
relaxed-attention-a-simple-method-to-boost3.19
deep-speech-2-end-to-end-speech-recognition3.60
generative-speech-recognition-error2.11
it-s-never-too-late-fusing-acoustic2.2