HyperAI
HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
소스 자유형 도메인 적응
Source Free Domain Adaptation On Visda 2017
Source Free Domain Adaptation On Visda 2017
평가 지표
Accuracy
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Accuracy
Paper Title
Repository
SFDA2++
89.6
SF(DA)$^2$: Source-free Domain Adaptation Through the Lens of Data Augmentation
-
RCL
93.2
Empowering Source-Free Domain Adaptation via MLLM-Guided Reliability-Based Curriculum Learning
-
NRC
85.9
Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation
-
G-SFDA
85.4
Generalized Source-free Domain Adaptation
-
SHOT++
87.3
Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer
-
SHOT
82.9
Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation
-
SFDA2
88.1
SF(DA)$^2$: Source-free Domain Adaptation Through the Lens of Data Augmentation
-
DaC
87.3
Divide and Contrast: Source-free Domain Adaptation via Adaptive Contrastive Learning
-
C-SFDA
87.8
C-SFDA: A Curriculum Learning Aided Self-Training Framework for Efficient Source Free Domain Adaptation
-
0 of 9 row(s) selected.
Previous
Next
Source Free Domain Adaptation On Visda 2017 | SOTA | HyperAI초신경