HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 소스 자유형 도메인 적응
  4. Source Free Domain Adaptation On Visda 2017

Source Free Domain Adaptation On Visda 2017

평가 지표

Accuracy

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
Accuracy
Paper TitleRepository
SFDA2++89.6SF(DA)$^2$: Source-free Domain Adaptation Through the Lens of Data Augmentation
RCL93.2Empowering Source-Free Domain Adaptation via MLLM-Guided Reliability-Based Curriculum Learning
NRC85.9Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation
G-SFDA85.4Generalized Source-free Domain Adaptation
SHOT++87.3Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer
SHOT82.9Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation
SFDA288.1SF(DA)$^2$: Source-free Domain Adaptation Through the Lens of Data Augmentation
DaC87.3Divide and Contrast: Source-free Domain Adaptation via Adaptive Contrastive Learning
C-SFDA87.8C-SFDA: A Curriculum Learning Aided Self-Training Framework for Efficient Source Free Domain Adaptation
0 of 9 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili