HyperAI
HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
스마크
Smac On Smac Corridor
Smac On Smac Corridor
평가 지표
Average Score
Median Win Rate
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Average Score
Median Win Rate
Paper Title
Repository
DIQL
19.68
91.62
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
DPLEX
19.08
81.25
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
-
VDN
19.47
85.34
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
IQL
-
0
The StarCraft Multi-Agent Challenge
-
DDN
20
95.4
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
Heuristic
-
0
The StarCraft Multi-Agent Challenge
-
QMIX
15.07
37.61
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
DMIX
19.66
90.45
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
QPLEX
18.73
75.00
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
-
ACE
-
100
ACE: Cooperative Multi-agent Q-learning with Bidirectional Action-Dependency
-
QMIX
-
1
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
-
QMIX
-
1
The StarCraft Multi-Agent Challenge
-
IQL
19.42
84.87
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
0 of 13 row(s) selected.
Previous
Next
Smac On Smac Corridor | SOTA | HyperAI초신경