HyperAI
HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
스마크
Smac On Smac 3S5Z Vs 3S6Z 1
Smac On Smac 3S5Z Vs 3S6Z 1
평가 지표
Median Win Rate
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Median Win Rate
Paper Title
Repository
QMIX
2
Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
-
Heuristic
0
The StarCraft Multi-Agent Challenge
-
DIQL
62.22
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
QMIX
67.22
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
DDN
94.03
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
IQL
29.83
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
VDN
89.2
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
DMIX
91.08
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
-
DPLEX
90.62
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
-
ACE
100
ACE: Cooperative Multi-agent Q-learning with Bidirectional Action-Dependency
-
QPLEX
84.38
A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
-
VDN
2
The StarCraft Multi-Agent Challenge
-
IQL
0
The StarCraft Multi-Agent Challenge
-
0 of 13 row(s) selected.
Previous
Next
Smac On Smac 3S5Z Vs 3S6Z 1 | SOTA | HyperAI초신경