HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 스마크
  4. Smac On Smac 3S5Z Vs 3S6Z 1

Smac On Smac 3S5Z Vs 3S6Z 1

평가 지표

Median Win Rate

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
Median Win Rate
Paper TitleRepository
QMIX2Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
Heuristic0The StarCraft Multi-Agent Challenge
DIQL62.22DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
QMIX67.22DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DDN94.03DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
IQL29.83DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
VDN89.2DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DMIX91.08DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DPLEX90.62A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
ACE100ACE: Cooperative Multi-agent Q-learning with Bidirectional Action-Dependency
QPLEX84.38A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
VDN2The StarCraft Multi-Agent Challenge
IQL0The StarCraft Multi-Agent Challenge
0 of 13 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili