HyperAIHyperAI초신경
홈뉴스연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 스마크
  4. Smac On Smac 27M Vs 30M

Smac On Smac 27M Vs 30M

평가 지표

Average Score
Median Win Rate

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
Average Score
Median Win Rate
Paper TitleRepository
DMIX19.4385.45DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
VDN18.4563.12DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DIQL14.456.02DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
QMIX19.4184.77DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
Heuristic-0The StarCraft Multi-Agent Challenge
DDN19.7191.48DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
QPLEX19.3378.12A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
DPLEX19.6290.62A Unified Framework for Factorizing Distributional Value Functions for Multi-Agent Reinforcement Learning
IQL14.012.27DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
QMIX-49The StarCraft Multi-Agent Challenge
QMIX-49Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
0 of 11 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili