HyperAI초신경
홈
뉴스
최신 연구 논문
튜토리얼
데이터셋
백과사전
SOTA
LLM 모델
GPU 랭킹
컨퍼런스
전체 검색
소개
한국어
HyperAI초신경
Toggle sidebar
전체 사이트 검색...
⌘
K
홈
SOTA
Smac 1
Smac On Smac Off Distant Parallel
Smac On Smac Off Distant Parallel
평가 지표
Median Win Rate
평가 결과
이 벤치마크에서 각 모델의 성능 결과
Columns
모델 이름
Median Win Rate
Paper Title
Repository
DIQL
0.0
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DDN
0.0
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
IQL
0.0
-
-
QMIX
0.0
QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
DMIX
0.0
DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
MASAC
0.0
Decomposed Soft Actor-Critic Method for Cooperative Multi-Agent Reinforcement Learning
QTRAN
0.0
QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning
VDN
85.0
Value-Decomposition Networks For Cooperative Multi-Agent Learning
COMA
0.0
Counterfactual Multi-Agent Policy Gradients
DRIMA
95.0
Disentangling Sources of Risk for Distributional Multi-Agent Reinforcement Learning
-
0 of 10 row(s) selected.
Previous
Next