HyperAIHyperAI초신경
홈뉴스최신 연구 논문튜토리얼데이터셋백과사전SOTALLM 모델GPU 랭킹컨퍼런스
전체 검색
소개
한국어
HyperAIHyperAI초신경
  1. 홈
  2. SOTA
  3. 스마크+
  4. Smac On Smac Def Armored Sequential

Smac On Smac Def Armored Sequential

평가 지표

Median Win Rate

평가 결과

이 벤치마크에서 각 모델의 성능 결과

모델 이름
Median Win Rate
Paper TitleRepository
QTRAN93.8QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement Learning
VDN96.9Value-Decomposition Networks For Cooperative Multi-Agent Learning
QMIX0.0QMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
MASAC0.0Decomposed Soft Actor-Critic Method for Cooperative Multi-Agent Reinforcement Learning
DRIMA100Disentangling Sources of Risk for Distributional Multi-Agent Reinforcement Learning-
IQL9.4The StarCraft Multi-Agent Challenges+ : Learning of Multi-Stage Tasks and Environmental Factors without Precise Reward Functions
DDN71.9DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
COMA0.0Counterfactual Multi-Agent Policy Gradients
MADDPG90.6Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments
DIQL53.1DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
DMIX81.3DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning
0 of 11 row(s) selected.
HyperAI

학습, 이해, 실천, 커뮤니티와 함께 인공지능의 미래를 구축하다

한국어

소개

회사 소개데이터셋 도움말

제품

뉴스튜토리얼데이터셋백과사전

링크

TVM 한국어Apache TVMOpenBayes

© HyperAI초신경

TwitterBilibili